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Abstract

A new three-dimensional mesh deformation algorithm, based on quaternion

algebra, is introduced. A brief overview of quaternion algebra is provided, along

with some preliminary results for two-dimensional structured and unstructured

viscous mesh deformation.
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Introduction

Mesh deformation is an important element in the analysis of moving bodies and

shape optimization. The lack of robust and efficient mesh deformation tools is

still a major barrier to routine applications of high-fidelity tools such as

computational fluid dynamics (CFD) and computational structural mechanics

(CSM) for multidisciplinary analysis and optimization. For example, CFD

application for shape optimization requires a robust, automatic, and efficient tool

to propagate the boundary deformation into the field mesh. For the gradient-

based optimization, the efficiency is particularly crucial where in addition to the

boundary deformation the sensitivity of the boundary coordinates must be

propagated into the field mesh. Figure 1 shows an example of a boundary

perturbation, where the boundary has been deformed, rotated, and translated.

The boundary deformation is defined as

_i =rdi -r"i (1)

where r ui are the undeformed boundary coordinates, and rai are the deformed

boundary coordinates. There are two basic techniques to propagate the boundary

perturbations into the field mesh: 1) mesh regeneration, and 2) mesh

deformation. The next two subsections provide an overview of these techniques

for structured and unstructured meshes.



Structured Mesh

Most structured grid regeneration and deformation techniques are based on

transfinite interpolation (TFI). Gaitonde and Fiddes have provided a mesh

regenerating technique based on TFI with exponential blending functions [1].

The choice of blending functions has a considerable influence on the quality and

robustness of the field mesh. Soni has proposed a set of blending functions based

on arclength [2]; such a set is extremely effective and robust for mesh

regeneration and deformation. Jones and Samareh have presented an algorithm

for general multiblock mesh regeneration and deformation based on Soni's

blending functions [3].

Hartwich and Agrawal have used a variation of the TFI method [4]. They have

introduced two new techniques: the use of the "slave-master" concept to

semiautomate the process, and the use of a Gaussian distribution function to

preserve the integrity of meshes in the presence of multiple body surfaces. Wong

et al. have used Algebraic and Iterative Mesh 3D (AIM3D), which is based on a

combination of algebraic and iterative methods [5]. Leatham and Chappell have

used a Laplacian technique more commonly used for unstructured mesh

deformation [61.



Unstructured Mesh

For unstructured meshes with large geometry changes, a new mesh may need to

be regenerated at the beginning of each optimization cycle. Botkin has

introduced a local remeshing procedure that operates only on the specific edges

and faces associated with the design variable changes [7]. Similarly, Kodiyalam,

Kumar, and Finnigan have used a mesh regeneration technique based on the

assumption that the solid model topology stays fixed for small perturbations [8].

Solid model topology comprises the number of mesh-points, edges, and faces.

Any change in the topology will cause the model regeneration to fail. To avoid

such a failure, a set of constraints among design variables must be satisfied, in

addition to constraints on their bounds.

During shape optimization, the boundary mesh may undergo many small

deformations; it would be too costly to regenerate the mesh in response to these

deformations. In addition, the new, regenerated mesh may not have the same

number of mesh points and/or the same connectivity. Either of these situations

will result in discontinuous sensitivity derivatives. Batina has presented a mesh

deformation algorithm that did alleviate the need for mesh regeneration. Batina's

approach models mesh edges with springs [9]. The spring stiffness kjk for a

given edge jk is taken to be inversely proportional to the element edge length.

Then, the field mesh movement is computed through the static equilibrium

equations:



kj_8" I

- where kjk -
6n*_- _kjk ' rj-r_

Ill

(2)

The summation is over all the edges of the elements. The coefficient kjk is

relatively large for small cells. Therefore these small cells, which are usually

near the boundary of the body, tend to undergo rigid body movement. This rigid

body movement avoids rapid variations in deformation, thus eliminating thc

possibility of small cells having very large changes in volume. These largc

changes could lead to negative cell volumes.

Blom [10] has provided a detailed analysis for the spring method and draws an

analogy between the spring method and an elliptic differential equation approach

for structured mesh generation. Zhang and Belegundu have proposed an

algorithm similar to the spring analogy that can handle large mesh deformation

[11]. They have used the ratio of the cell Jacobian to the cell volume tbr the

spring stiffness. Crumpton and Giles have found the spring analogy inadequate

and ineffective for large mesh deformations [12] and proposed a tbrmulation

based on the heat conduction equation with the coefficient of thermal

conductivity inversely proportional to cell w)lume. They attributed their success

to the choice of cell volume used in the criteria for a valid mesh. In contrast, the



springanalogyusesonlyedges,whicharenotdirectlylinkedto themesh

validity.

Farhatetal.[13]haveproposedamodificationtothespringanalogyalgorithm

toincludeadditionaltorsionalspringtocontrolmeshskewnessandfolding.For

two-dimensionalapplications,theydemonstratedthatthemodifiedalgorithmhas

advantagesintermsofrobustness,quality,andperformance.

TezduyarandBehr[14]haveproposedanalgorithmbasedonlinearelasticity,

whichincludesfullstresstensor.Cavalloetal.[I5]haveappliedthismethodto

meshdeformationforaero/propulsiveflowfieldcalculations.Theynotedthatthe

methodpreservesthemeshquality,andit prc_ducesabettermeshthanthespring

analogymethod.Thelinearelasticityapproachrequiressolvingthecomplete

stresstensor.In contract,thespringanalogyrepresentsonlythediagonal

elementsof thestresstensor.Cavalloetal.haveconcludedthattheelasticity

approachisconsiderablymoreexpensive.

Role of boundary orientation in mesh deformation

The traditional deformation algorithms, such as interpolation and spring analogy,

use boundary translation to deform the field mesh. However, the boundary

deformation alters the boundary position as well as the boundary orientation

(i.e., rotation angle) as shown in Fig. (2). The traditional mesh deformation



algorithmsdonotusethisadditionalinformationonthechangesintheboundary

orientation.Morton,Melville,andVisbal[16]haveproposedaTFIalgorithmto

interpolatetheboundarydeformationaswellasthechangesin theorientation

throughEulerangle.TheyconcludedtheinclusionofEuleranglepreservesthe

meshorthogonalityfor significantdeformations.Theysuccessfullyappliedthe

algorithmtoatwo-dimensionalstructuredCFDmesh.

Extensionof theapproachof Morton,Melville,andVisbal[16] to three-

dimensionalapplicationsrequiresthedirectinterpolationof thechangesin the

orientation(threeEulerangles).Historically,Euleranglerepresentationis the

mostpopularinterpolationtechniquefororientation[17].Euleranglesignorethe

interactionof multiplerotationsabouttheseparateaxeswhichcouldleadto

"gimballock"asdescribedbyWattandWatt[17].

ThethreeEulerrotationscanbeaccomplishedby a singlerotationabouta

vector.Thissinglerotationsimplifiestheinterpolationprocess,butit hasthe

inherentproblemof non-smoothinterpolationandtheso-called"gimbal-lock."

Toavoidtheseproblems,quaternionsareusedtorepresentthechangesin the

boundaryorientation.

A briefintroductionofquaternionalgebraispresentedinthenextsection.Then,

a generalthree-dimensionalmeshdeformationalgorithmbasedonquaternion

algebraispresented.



What are quaternions?

Only brief review of quaternion algebra is provided here; readers are referred to

the work of Altmann [18], Shoemake [19], and Philips, Hailey, and Gerbert [20]

for more details. There is some controversy on who invented quaternion algebra.

The articles by Altman [18] and Philips et al. [20] provide a very interesting

history of quaternion algebra.

A quaternion is a generalized complex number (hypercomplex number) that is

composed of one real and three imaginary numbers

(Q = qo + q_i + q2 J + q ._k ) , where ii = jj = kk = - !,

ij =-ji = k, jk =-kj = i, ki =-ik = j. The following is a set quaternion

properties that will be used later:

• Conjugate ofa quaternion, Q" =qo-q_i-qj-q3k

• Magnitudeofaquaternion, Q =x[-_ =4q_+q_+q_+q_

• Unit quaternion, Q = 1

• Associative, (Q1Q2)Q3 = QI(QzQ_)

• Not commutative, QIQ2 _ Q2Q1



• Inverse ofa quaternion, Q-t = Q./(QQ.)

• For unit quaternions, Q-I = Q.

A quaternion can be interpreted as a scalar together with a vector (direction),

Q = Is, v], s = q0, v = (ql, q2, q3)

In this notation, quaternion multiplication has the particularly simple form

Q1Q2 =[s,,vl][s2,v2]=[s, s2-v, • v2,s,v 2 +s2v , +v, xv2]

where • denotes the vector dot product, and X denotes the vector cross product.

Quaternions are ideal for modeling rotations. The last three components of a

quaternion represent the axis around which the rotation occurs, and the first

component represents the magnitude of the rotation. There are three steps

involved in rotating a point, p, about a unit vector, u, by an angle, O. First, a

quaternion is constructed for the point as P = [O,p]. Second, a quaternion is

constructed for the rotation as

0 0
Q = [s, v], s = cos-, v = u sin - (3)

2 2

Third, the point is rotated as P_otat_d= QPQ-_. If Q is a unit quaternion, then

we can use the conjugate of the quaternion to perform the rotation,

P_o_a_d= QPQ*. Multiple rotations can be simplified by using a single



quaternion.Forexample,if Q_and Q2 are unit quaternions representing two

rotations, the two rotations can be combined as

Qz (QIPQt ' )Q2-1 = (Q2Q1)P(Q_'Q_.') = (Q2Q1) P(Q2 Q, )-'

Quaternion coordinates represent rotation as Cartesian coordinates represent

translation as a single vector. This characteristic has been fully exploited in

representing attitude of aircraft kinematics [201. Quaternion coordinates are best

for interpolation of orientation as used in computer animation. Shoemake has

presented a robust and efficient application of quaternions for B6zier

interpolation of orientation used in computer animation [19].

Quaternions and Mesh Deformation

This section presents a technique to model the boundary deformation by

quaternion algebra. When these boundary quaternions are applied to the

undeformed boundary mesh, they produce the deformed boundary mesh and

orientation.

The deformation vectors, _, represent the boundary translation, which is

defined in the Euclidian space. In traditional mesh deformation algorithms, these

vectors are used to propagate the deformation into the field mesh. In a similar

manner, we will use the boundary quaternions to propagate the deformation into



thefieldmesh.Theprocessofdeterminingboundaryquaternionsisdividedinto

threesteps,asshowninFig.(3).

In step1,themeshpointsfor theundeformedboundary(r,u), thedeformed

boundary( rid

origin.

), and the neighboring points (r u and r d ) are translated to the

r'"= r"-_', rd_= r a -ga (4)

In the second step, r"' is rotated so that the undeformed boundary normal vector

aligns with the deformed boundary normal vector. This rotation is modeled with

a quaternion. First, the normal vector of a plane shared by both deformed and

undeformed normal vectors share (defined as I1 = n ×n a ) and the angle a'

between two normal vectors is determined. Then, a quaternion is defined for the

, a'/ " _ are rotated byrotation as Ql=[COS_/2,n xndsin ]. Points r "l

quaternion to form r ''2 , such that

¢2 = Q, [0, r"' ]Q,-' (5)

In the third step, points r "2 are rotated about the deformed boundary normal

vector to minimize the angle between corresponding neighboring points. The

optimum rotation angle, O, is defined as the average angle between



correspondingedgesof r "2 andtheedgesof deformedboundary.Another

quaternioncanthenbedefinedforthisrotation.Q2 = [cos O_2 , n a sin O_2 ] .

These two quaternions are combined to form a single quaternion as Qi = Q_Q2.

The total translation vector for the boundary can now be defined as

Ai = _d -d,, where [d,,0] = Qi[O,r(' ]Q['.

Quaternions and total translation vectors for all boundary mesh points have been

computed. The translation vectors account for the translation, and quaternions

account for the changes in the boundary orientation.

The translation vectors and quaternions are propagated into the field mesh by

one of the traditional deformation algorithms such as TFI or the spring analogy.

Then, the field mesh is updated based on the field values for the translation

vectors and quaternions as

R 'j = Ay_d + t') r0 R" 1(I</_eta _t_,,ta t , y/etaJ_.t_et,t (6)

Results

The results are presented for structured and unstructured viscous mesh

deformations. Figure (4) shows a viscous structured mesh with 257x65 mesh

points. The undeformed mesh lines are orthogonal to the boundaries. The

boundary mesh is deformed, rotated, and translated to simulate aeroelastic



deformation.Figure(4) showscomparisonsof TFI (leftsideof figure)and

quaternionapproach(rightsideof figure).UnlikethetraditionalTFI, the

quaternionapproachcanclearlypreservetheboundaryorthogonality.Because

theboundaryquaternionsarebasedonthechangesin theboundarymeshpoint

positionsaswellastheorientations,thealgorithmcanguaranteethatthemesh

neartheboundaryhasthesamecharacteristicsastheundeformedmesh.Figure

(4)clearlydemonstratesthisimportantproperty.

Next,thequaternionapproachisappliedtoanunstructuredviscousmesh,where

the flaphasbeenrotated.Thespringanalogywasusedto propagatethe

boundaryquaternionstothefieldmesh.TheresultsareshowninFig.(5).Again,

theuseofquaternionhaspreservedthemeshcharacteristics.

Conclusions

A new three-dimensional mesh deformation algorithm based on quaternion

algebra has been presented. These preliminary two-dimensional results indicate

the traditional algorithms such as TFI and spring analogy can be easily

augmented with the quaternions to preserve mesh quality near the viscous

boundary. We plan to apply this method for three-dimensional structured and

unstructured viscous meshes. We also plan to evaluate the quality of meshes

deformed by quaternion approach by means of CFD applications.
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